Quantifying Domestic Violence in Times of Crisis: Real-Time Measurement Using Search Data

Dan Anderberg (Royal Holloway UoL) Helmut Rainer (U of Munich, ifo Inst.) Fabian Siuda (Vienna UEB)

April 26, 2025

- During the covid-crisis we reached for an **alternative data source** to monitor IPV incidence in the UK **in real time**.
- Used **Google search data** and found a substantially **larger IPV increase** than found in police data.
- Such data are **readily available** and **methods** are rapidly improving for continuous real-time monitoring.
- Can to **support policy**, e.g. informing **dashboards** or **early-warning systems** during future shocks.

COVID-19 & Domestic Violence: A Measurement Dilemma

Feminist economics In quarantine with an abuser: surge in domestic violence reports linked to coronavirus

Cases typically spike in times of economic crisis - and with most of the US told to stay home, hotlines are worried victims can't leave

COVID-19 & Domestic Violence: A Measurement Dilemma

Feminist economics In quarantine with an abuser: surge in domestic violence reports linked to coronavirus

Cases typically spike in times of economic crisis - and with most of the US told to stay home, hotlines are worried victims can't leave

- Concern that lockdown increased IPV, but police reports suspected of under-capturing this.
- Helplines reported sharp increases (60%) but varied regionally and lacked standardisation.
- Victimisation surveys of **no help** due to lag.

COVID-19 & Domestic Violence: A Measurement Dilemma

Feminist economics In quarantine with an abuser: surge in domestic violence reports linked to coronavirus

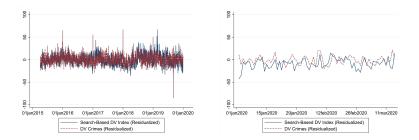
Cases typically spike in times of economic crisis - and with most of the US told to stay home, hotlines are worried victims can't leave

 \rightarrow There was an urgent need for reliable real-time indicators.

- Concern that lockdown increased IPV, but police reports suspected of under-capturing this.
- Helplines reported sharp increases (60%) but varied regionally and lacked standardisation.
- Victimisation surveys of **no help** due to lag.

1. Collected UK-level daily Google search data for five years on a large number of help-seeking terms along with corresponding daily police calls-for-service data on IPV.

- 1. Collected UK-level daily Google search data for five years on a large number of help-seeking terms along with corresponding daily police calls-for-service data on IPV.
- Used a signal-to-noise approach to train an algorithm on all the pre-2020 data, thereby identifying the search-terms with the most IPV predictive power.

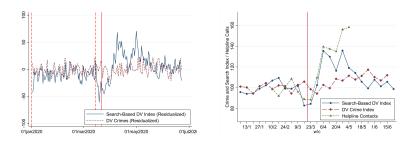

- 1. Collected UK-level daily Google search data for five years on a large number of help-seeking terms along with corresponding daily police calls-for-service data on IPV.
- Used a signal-to-noise approach to train an algorithm on all the pre-2020 data, thereby identifying the search-terms with the most IPV predictive power.
- 3. Weighted the search-terms into **composite search-based IPV Index**.

- 1. Collected UK-level daily Google search data for five years on a large number of help-seeking terms along with corresponding daily police calls-for-service data on IPV.
- Used a signal-to-noise approach to train an algorithm on all the pre-2020 data, thereby identifying the search-terms with the most IPV predictive power.
- 3. Weighted the search-terms into **composite search-based IPV Index**.
- Validation: Verified good predictive power in a testing period – the first 75 days of 2020.

Training and Testing the Algorithm for the Index

Search-based IPV index and police-reported IPV in the training and the testing period (both pre-lockdown)

Figure 1: Training Period and Testing Period


- Lockdown period:
 - **Police-recorded IPV** rose by 5–7%;

- Lockdown period:
 - **Police-recorded IPV** rose by 5–7%;
 - Search index rose by 40%.

- Lockdown period:
 - Police-recorded IPV rose by 5–7%;
 - Search index rose by 40%.
 - Helpline data rose by 40-60%,

- Lockdown period:
 - **Police-recorded IPV** rose by 5–7%;
 - Search index rose by 40%.
 - Helpline data rose by 40-60%,

Figure 2: During the Lockdown Period Spring 2020

• Similar patterns replicated in Los Angeles.

LAPD Calls for S	ervice 2024 to	Q Search X				
Incident_Number	Area_Occ	Rpt_Dist	Dispatch_Date	Dispatch_Time	Call_Type_Code	Call_Type_Text
PD25041100000553	Outside		2025 Apr 11 12:00:00 AM	03:47:49	006	CODE 6
PD25041000005436	Outside		2025 Apr 10 12:00:00 AM	21:57:42	005	CODE 6
PD25041100000538	Harbor	0501	2025 Apr 11 12:00:00 AM	03:46:26	90681	906 CODE 30 RINGER
PD25041100000295	Outside		2025 Apr 11 12:00:00 AM	01:25:13	005	CODE 6
PD25041100000554	Outside		2025 Apr 11 12:00:00 AM	03:48:08	005	CODE 6
PD25041100000393	Southwest	0391	2025 Apr 11 12:00:00 AM	02:15:00	90681	906 CODE 30 RINGER
PD25041100000485	West Valley	1033	2025 Apr 11 12:00:00 AM	03:10:42	415M	415 MAN

cords per page 50 - 1,955,301 to 1,955,350 of 1,955,351 IC C > >I

• Similar patterns replicated in Los Angeles.

LAPD Calls for Service 2024 to Present						Q. Search X	
Incident_Number	Area_Occ	Rpt_Dist	Dispatch_Date	Dispatch_Time	Call_Type_Code	Call_Type_Text	
PD25041100000553	Outside		2025 Apr 11 12:00:00 AM	03:47:49	006	CODE 6	
PD25041000005436	Outside		2025 Apr 10 12:00:00 AM	21:57:42	006	CODE 6	
PD25041100000538	Harbor	0501	2025 Apr 11 12:00:00 AM	03:46:26	90681	906 CODE 30 RINGER	
PD25041100000295	Outside		2025 Apr 11 12:00:00 AM	01:25:13	006	CODE 6	
PD25041100000554	Outside		2025 Apr 11 12:00:00 AM	03:48:08	006	CODE 6	
PD25041100000393	Southwest	0391	2025 Apr 11 12:00:00 AM	02:15:00	90681	906 CODE 30 RINGER	
PD25041100000485	West Valley	1033	2025 Apr 11 12:00:00 AM	03:10:42	415M	415 MAN	

Key Message

Search data on help-seeking offered **available** "independent" evidence on the scale and timing of the crisis. Captures intent to act, not just completed acts of help-seeking or formal reports.

"Nowcasting"

Uses digital, high-frequency data to estimate current states

(vs. retrospective reporting).

A Version of Nowcasting

"Nowcasting"

Uses **digital**, **high-frequency data** to **estimate** <u>**current states**</u> (vs. retrospective reporting).

• Used in economics (e.g. GDP forecasts from online prices or satellite data), now emerging in social and health research.

"Nowcasting"

Uses **digital**, **high-frequency data** to **estimate** <u>**current states**</u> (vs. retrospective reporting).

- Used in **economics** (e.g. GDP forecasts from online prices or satellite data), now emerging in social and health research.
- Can be combined with powerful machine learning techniques (neural networks, random forest, text mining/NLP...)

"Nowcasting"

Uses **digital**, **high-frequency data** to **estimate** <u>**current states**</u> (vs. retrospective reporting).

- Used in **economics** (e.g. GDP forecasts from online prices or satellite data), now emerging in social and health research.
- Can be combined with powerful machine learning techniques (neural networks, random forest, text mining/NLP...)

Policy applications

Real-time risk mapping, rapid service demand projections, etc.

Where These Methods Can Be Applied?

- Data Sources: Social media, helpline logs, EHRs, DV forums.
- Examples of use:
 - Detect underreporting (Shanmugam et al., 2024).
 - Forecast IPV-linked suicides (Kafka et al., 2024).
 - Identify systemic risks in teen dating violence (Cohen et al., 2018).
- **Caution**: Ethical use is essential: data protection, avoid surveillance misuse.
- Demand is growing: Funding growing for AI-IPV projects.

THANK YOU FOR LISTENING!

Dan.Anderberg@rhul.ac.uk